279 research outputs found

    Solar Stereoscopy with STEREO/EUVI A and B spacecraft from small (6 deg) to large (170 deg) spacecraft separation angles

    Full text link
    We performed for the first time stereoscopic triangulation of coronal loops in active regions over the entire range of spacecraft separation angles (αsep6,43,89,127\alpha_{sep}\approx 6^\circ, 43^\circ, 89^\circ, 127^\circ, and 170170^\circ). The accuracy of stereoscopic correlation depends mostly on the viewing angle with respect to the solar surface for each spacecraft, which affects the stereoscopic correspondence identification of loops in image pairs. From a simple theoretical model we predict an optimum range of αsep22125\alpha_{sep} \approx 22^\circ-125^\circ, which is also experimentally confirmed. The best accuracy is generally obtained when an active region passes the central meridian (viewed from Earth), which yields a symmetric view for both STEREO spacecraft and causes minimum horizontal foreshortening. For the extended angular range of αsep6127\alpha_{sep}\approx 6^\circ-127^{\circ} we find a mean 3D misalignment angle of μPF2139\mu_{PF} \approx 21^\circ-39^\circ of stereoscopically triangulated loops with magnetic potential field models, and μFFF1521\mu_{FFF} \approx 15^\circ-21^\circ for a force-free field model, which is partly caused by stereoscopic uncertainties μSE9\mu_{SE} \approx 9^\circ. We predict optimum conditions for solar stereoscopy during the time intervals of 2012--2014, 2016--2017, and 2021--2023.Comment: Solar Physics, (in press), 22 pages, 9 figure

    A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. I. Theory

    Full text link
    We derive an analytical approximation of nonlinear force-free magnetic field solutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data, constrained either by observed line-of-sight magnetograms and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions provide the magnetic field components Bx(x)B_x({\bf x}), By(x)B_y({\bf x}), Bz(x)B_z({\bf x}), the force-free parameter α(x)\alpha({\bf x}), the electric current density j(x){\bf j}({\bf x}), and are accurate to second-order (of the nonlinear force-free α\alpha-parameter). The explicit expressions of a force-free field can easily be applied to modeling or forward-fitting of many coronal phenomena.Comment: Solar Physics (in press), 26 pages, 11 figure

    Deterministically Driven Avalanche Models of Solar Flares

    Full text link
    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar Physic

    The State of Self-Organized Criticality of the Sun During the Last Three Solar Cycles. II. Theoretical Model

    Full text link
    The observed powerlaw distributions of solar flare parameters can be interpreted in terms of a nonlinear dissipative system in the state of self-organized criticality (SOC). We present a universal analytical model of a SOC process that is governed by three conditions: (i) a multiplicative or exponential growth phase, (ii) a randomly interrupted termination of the growth phase, and (iii) a linear decay phase. This basic concept approximately reproduces the observed frequency distributions. We generalize it to a randomized exponential-growth model, which includes also a (log-normal) distribution of threshold energies before the instability starts, as well as randomized decay times, which can reproduce both the observed occurrence frequency distributions and the scatter of correlated parametyers more realistically. With this analytical model we can efficiently perform Monte-Carlo simulations of frequency distributions and parameter correlations of SOC processes, which are simpler and faster than the iterative simulations of cellular automaton models. Solar cycle modulations of the powerlaw slopes of flare frequency distributions can be used to diagnose the thresholds and growth rates of magnetic instabilities responsible for solar flares.Comment: Part II of Paper I: The State of Self-Organized Criticality of the Sun During the Last Three Solar Cycles. I. Observation

    Deconvolution of directly precipitating and trap-precipitating electrons in solar flare hard x-rays. III.Yohkoh hard x-ray telescope data analysis

    Get PDF
    We analyze the footpoint separation d and flux asymmetry A of magnetically conjugate double footpoint sources in hard X-ray images from the Yohkoh Hard X-Ray Telescope (HXT). The data set of 54 solar flares includes all events simultaneously observed with the Compton Gamma Ray Observatory (CGRO) in high time resolution mode. From the CGRO data we deconvolved the direct-precipitation and trap-precipitation components previously (in Paper II). Using the combined measurements from CGRO and HXT, we develop an asymmetric trap model that allows us to quantify the relative fractions of four different electron components, i.e., the ratios of direct-precipitating (q_P1, q_P2) and trap-precipitating electrons (q_T1, q_T2) at both magnetically conjugate footpoints. We find mean ratios of q_P1=0.14+/-0.06, q_P2=0.26+/-0.10, and q_T=q_T1+q_T2=0.60+/-0.13. We assume an isotropic pitch-angle distribution at the acceleration site and double-sided trap precipitation (q_T2/q_T1=q_P2/q_P1) to determine the conjugate loss-cone angles (alpha_1=42^deg+/-11^deg and alpha_2=52^deg+/-10^deg) and magnetic mirror ratiosat both footpoints (R_1=1.6,...,4.0 and R_2=1.3,...,2.5). From the relative displacement of footpoint sources we also measure altitude differences of hard X-ray emission at different energies, which are found to decrease systematically with higher energies, with a statistical height difference of h_Lo-h_M1=980+/-250 km and h_M1-h_M2=310+/-300 km between the three lower HXT energy channels (Lo, M1, M2

    A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. II. Numeric Code and Tests

    Full text link
    Based on a second-order approximation of nonlinear force-free magnetic field solutions in terms of uniformly twisted field lines derived in Paper I, we develop here a numeric code that is capable to forward-fit such analytical solutions to arbitrary magnetogram (or vector magnetograph) data combined with (stereoscopically triangulated) coronal loop 3D coordinates. We test the code here by forward-fitting to six potential field and six nonpotential field cases simulated with our analytical model, as well as by forward-fitting to an exactly force-free solution of the Low and Lou (1990) model. The forward-fitting tests demonstrate: (i) a satisfactory convergence behavior (with typical misalignment angles of μ110\mu \approx 1^\circ-10^\circ), (ii) relatively fast computation times (from seconds to a few minutes), and (iii) the high fidelity of retrieved force-free α\alpha-parameters (αfit/αmodel0.91.0\alpha_{\rm fit}/\alpha_{\rm model} \approx 0.9-1.0 for simulations and αfit/αmodel0.7±0.3\alpha_{\rm fit}/\alpha_{\rm model} \approx 0.7\pm0.3 for the Low and Lou model). The salient feature of this numeric code is the relatively fast computation of a quasi-forcefree magnetic field, which closely matches the geometry of coronal loops in active regions, and complements the existing {\sl nonlinear force-free field (NLFFF)} codes based on photospheric magnetograms without coronal constraints.Comment: Solar PHysics, (in press), 25 pages, 11 figure

    Study of the three-dimensional shape and dynamics of coronal loops observed by Hinode/EIS

    Get PDF
    We study plasma flows along selected coronal loops in NOAA Active Region 10926, observed on 3 December 2006 with Hinode's EUV Imaging Spectrograph (EIS). From the shape of the loops traced on intensity images and the Doppler shifts measured along their length we compute their three-dimensional (3D) shape and plasma flow velocity using a simple geometrical model. This calculation was performed for loops visible in the Fe VIII 185 Ang., Fe X 184 Ang., Fe XII 195 Ang., Fe XIII 202 Ang., and Fe XV 284 Ang. spectral lines. In most cases the flow is unidirectional from one footpoint to the other but there are also cases of draining motions from the top of the loops to their footpoints. Our results indicate that the same loop may show different flow patterns when observed in different spectral lines, suggesting a dynamically complex rather than a monolithic structure. We have also carried out magnetic extrapolations in the linear force-free field approximation using SOHO/MDI magnetograms, aiming toward a first-order identification of extrapolated magnetic field lines corresponding to the reconstructed loops. In all cases, the best-fit extrapolated lines exhibit left-handed twist (alpha < 0), in agreement with the dominant twist of the region.Comment: 17 pages, 6 figure

    The State of Self-Organized Criticality of the Sun During the Last 3 Solar Cycles. I. Observations

    Full text link
    We analyze the occurrence frequency distributions of peak fluxes PP, total fluxes EE, and durations TT of solar flares over the last three solar cycles (during 1980--2010) from hard X-ray data of HXRBS/SMM, BATSE/CGRO, and RHESSI. From the synthesized data we find powerlaw slopes with mean values of αP=1.72±0.08\alpha_P=1.72\pm0.08 for the peak flux, αE=1.60±0.14\alpha_E=1.60\pm0.14 for the total flux, and αT=1.98±0.35\alpha_T=1.98\pm0.35 for flare durations. We find a systematic anti-correlation of the powerlaw slope of peak fluxes as a function of the solar cycle, varying with an approximate sinusoidal variation αP(t)=α0+Δαcos[2π(tt0)/Tcycle]\alpha_P(t)=\alpha_0+\Delta \alpha \cos{[2\pi (t-t_0)/T_{cycle}]}, with a mean of α0=1.73\alpha_0=1.73, a variation of Δα=0.14\Delta \alpha =0.14, a solar cycle period Tcycle=12.6T_{cycle}=12.6 yrs, and a cycle minimum time t0=1984.1t_0=1984.1. The powerlaw slope is flattest during the maximum of a solar cycle, which indicates a higher magnetic complexity of the solar corona that leads to an overproportional rate of powerful flares.Comment: subm. to Solar Physic

    Study of flare energy release using events with numerous type III-like bursts in microwaves

    Full text link
    The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows to obtain unique information about primary energy release mechanisms in solar flares. The SSRT spatially resolved images and a high spectral and temporal resolution allow direct determination not only the positions of its sources but also the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when the SSRT (about 5.7 GHz) is observing the flare region in two high-order fringes; thus, two 1D scans are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14 Apr 2002 is presented. Using-muliwavelength radio observations recorded by SSRT, SBRS, NoRP, RSTN we study an event with series of several tens of drifting microwave pulses with drift rates in the range from -7 to 13 GHz/s. The sources of the fast-drifting bursts were located near the top of the flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch-anisotropy of the emitting electrons.Comment: 16 pages, 6 figures, Solar Physics, in press, 201
    corecore